Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Question	Answer	Marks
1(a)	$\mathrm{N}+2$ to +3 (and oxidised)	1
	$\mathrm{Br}_{2} / \mathrm{BrO}$ to -1 (and reduced)	1
1(b)		
	3 bonding pairs around N (in a structure involving NOBr)	1
	rest of molecule correct	1
1(c)(i)	the power to which a concentration of a reactant is raised in the rate equation	1
1(c)(ii)	using expt. 2 and 3 $\mathrm{a}=2$ or [NO] 2nd order and conc $\times 3$ rate $\times 9$ or $6.1 \times 10^{-2} / 6.8 \times 10^{-3}=(0.09 / 0.03)^{\text {a }}$	1
	using expt. 1 and 2 $\mathrm{b}=1$ or $\left[\mathrm{Br}_{2}\right] 1^{\text {st }}$ order and conc $\times 2$ rate $\times 2$ or $6.8 \times 10^{-3} / 3.4 \times 10^{-3}=(0.04 / 0.02)^{b}$	1
(c)(iii)	initial rate $=0.16$ (32)	1
1(c)(iv)	$\begin{aligned} & \left(0.0034=k(0.03)^{2}(0.02)\right) \\ & k=188.9 \end{aligned}$	1
	$\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$	1
1(c)(v)	k decreases (as rate decreases)	1

Question	Answer	Marks
$1(\mathrm{~d})$	$m=2$ and $n=0$	1

Question	Answer	Marks
2(a)	it/solubility decreases down the group and $K_{\text {sp }}$ decreases	1
2(b)(i)	$\mathrm{MgCO}_{3}(\mathbf{s}) \rightleftharpoons \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$	1
2(b)(ii)	(white) solid appears/precipitation (of MgCO_{3})	1
	as $\left[\mathrm{CO}_{3}{ }^{2-}\right]$ increases shifting equilibrium to the LHS (precipitating out MgCO_{3})	1
2(c)	solubility $=\sqrt{ } 1.0 \times 10^{-5}=3.16 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$	1
	solubility $=3.2 \times 10^{-3} \times 84.3=0.27 \mathrm{~g} \mathrm{dm}^{-3}$	1
2(d)(i)	Mg^{2+} ion is smaller than Ba^{2+} ion or ionic radii increase down group ora	1
	$\left(\mathrm{Mg}^{2+}\right)$ distorts / polarises/ the anion/ nitrate group/nitrate ion/ $\mathrm{NO}_{3}{ }^{(1)-} / \mathrm{NO}_{3}$ ion more easily (than Ba^{2+}) ora	1
2(d)(ii)	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{BaO}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$	1
2(d)(iii)	$\mathrm{BaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2}$	1
	$\mathrm{Ba}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$	1

Question	Answer	Marks
3(a)	the potential difference between two half-cells/two electrodes (in a cell)	1
	under standard conditions of $1 \mathrm{~atm} ., 298 \mathrm{~K}$, (all) solutions being $1 \mathrm{~mol} \mathrm{dm}^{-3}$	1
3(b)(i)	8 marking points, any 2 points for each mark H_{2} / hydrogen correct delivery system for H_{2} Pb^{2+} (aq) Pb electrode Pt electrode $\mathrm{H}^{+}(\mathrm{aq})$ solution salt bridge voltmeter/V labelled	4
3(b)(ii)	more negative	1
	shifts $\mathrm{Pb}^{2+}\left(+2 \mathrm{e}^{-}\right) \leftrightharpoons \mathrm{Pb}$ equilibrium/reaction to the left	1

Question	Answer	Marks
3(c)(i)	$Q=0.4 \times 80 \times 60=1920 C$ and use of $96500 / 193000$ Moles of $\mathrm{Pb}=1920 / 193000=9.95 \times 10^{-3}$ Mass of $\mathrm{Pb}=207.2 \times 9.95 \times 10^{-3}=\mathbf{2 . 1} \mathbf{g}$ OR $Q=0.4 \times 80 \times 60=1920 \mathrm{C}$ and use of $1.6 \times 10^{-19} / 1.2 \times 10^{22}$ atoms $\mathrm{Pb}=6 \times 10^{21}$; moles of $\mathrm{Pb}=6 \times 10^{21} / 6 \times 10^{23}=0.01$ Mass of $\mathrm{Pb}=207.2 \times 0.01=\mathbf{2 . 1} \mathrm{g}$	2
3(c)(ii)		1
3(d)	reagents $/ \mathrm{PbO}_{2} / \mathrm{H}_{2} \mathrm{SO}_{4}$ and used up/concentration decreases	1
	as fuel/hydrogen is being continuously supplied/fuel has not run out	1

Question	Answer	Marks
$4(\mathrm{a})$	density is higher and melting point is higher	
	(density) due to A_{r} being larger and smaller atomic radii or (Co) atoms / ions heavier and smaller	$\mathbf{1}$
	(melting point) due to stronger attraction to cations as more delocalised electrons	$\mathbf{1}$
	(a molecule or ion) formed by a central metal atom/ion surrounded by (one or more) ligands	$\mathbf{1}$
$4(\mathrm{c})(\mathrm{i})$	same number and type of atoms and different structural formula	$\mathbf{1}$

Question	Answer			Marks
4(c)(ii)	octahedral AND 3D structure of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right]^{2+}$ e.g.			1
4(c)(iii)	co-ordinate/dative covalent			1
4(c)(iv)	+3 for both			1
4(d)	$\left(\mathrm{HNO}_{3}\right) \mathrm{Ag}^{+} / \mathrm{AgNO}_{3}$ cream(-yellow) ppt. (of AgBr) and no reaction/white ppt. for other isomer			1
	$\mathrm{Ba}(\mathrm{OH})_{2} / \mathrm{Ba}^{2+}(\mathrm{aq}) / \mathrm{BaCl}_{2} / \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ white ppt. (of BaSO_{4}) and no reaction for other isomer			1
4(e)	(d-d) energy gap / ΔE is different			1
	absorb different wavelength/frequency (of light)			1
4(f)		heterogeneous	homogeneous	2
		\checkmark		
			\checkmark	
			\checkmark	
		\checkmark		

Question
Question

Question	Answer	Marks
6(a)(i)		1
6(a)(ii)	$\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{+}+2 \mathrm{HSO}_{4}^{-}$	1
6(a)(iii)	any three from: Point 1: bonds/electrons are partially delocalised in T or delocalised $/ \pi$ system $/ \pi$ bonding extends over only five carbons Point 2: four π-electrons in the (delocalised system of \mathbf{T}) or methylbenzene has (two) more π-electrons/(two) more delocalised electrons Point 3: contains a carbon that is sp^{3} hybridised in \mathbf{T} or (all the) carbons are sp^{2} hybridised in methylbenzene Point 4: one carbon has a bond angle of $109.5^{\circ} /$ tetrahedral (in T) or (C-C) bond strengths / lengths are not all the same or not all the bond angles are 120° (in T)	3
6(b)(i)	4-aminobenzoic acid	1
6(b)(ii)	```step 1 Sn + HCl [1] concentrated/reflux/heat [1] step 2 CH3COCl[1] step 3 KMnO step 4 aqueous HCl and heat [1] step 5 ethanol, H2SO4, concentrated/reflux/heat [1]```	6

Question	Answer				Marks
6(c)	(benzocaine) is less (basic than ethylamine) AND Ione pair (on N) is less available to accept a proton/ H^{+} since (lone pair on N) is delocalised over the ring or phenyl ring is electron withdrawing group OR ethylamine is more basic (than benzocaine) AND Ione pair (on N) is more available to accept a proton $/ \mathrm{H}^{+}$ since ethyl/alkyl group is electron-donating group				2
6(d)(i)	7 peaks				1
6(d)(ii)	CDCl_{3} will produce no signal in the spectrum or CHCl_{3} would produce a signal/would be detected				1
6(d)(iii)	$\delta / p p m$ group responsible for the peak		number of H atoms responsible for the peak	splitting pattern	4
	1.2	$\mathrm{CH}_{(3)}$	3	triplet	
	3.5	$\mathrm{CH}_{(2)} \mathrm{O}$	2	quartet	
	5.5	NH_{2}	2	singlet (broad)	
	7.1-7.4	H attached to aromatic/benzene ring	4	multiplet	
6(d)(iv)	neighbouring/adjacent carbon atom has two protons/H (attached to it) or there is an adjacent $\mathrm{CH}_{2}(\mathrm{O})$ group				1
6(d)(v)	peak at $5.5 / \mathrm{NH}_{2}$ peak will disappear and NH_{2} /protons exchange/swap with deuterium				1

Question

Question	Answer	Marks
7(a)	$\begin{aligned} & \text { Fe atom }=\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2} \\ & F e^{3+} \text { ion }=\left(1 s^{2} 2 s^{2} 2 p^{6}\right) 3 s^{2} 3 p^{6} 3 d^{5} \end{aligned}$	1
7(b)	$\begin{aligned} & \left(\left[\mathrm{H}^{+}\right]^{2}=8.9 \times 10^{-4} \times 0.25 \text { or } 2.225 \times 10^{-4}\right) \\ & {\left[\mathrm{H}^{+}\right]=0.0149} \end{aligned}$	1
	$\mathrm{pH}=-\log (0.0149)=1.83$	1
7(c)(i)	($K_{\text {stab }}$ is) the equilibrium constant for the formation of a complex (ion) (in a solvent from its constituent ions/molecules)	1
7(c)(ii)	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{~F}\right]^{2+}$ and $\left[\mathrm{Hg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{C}\right\rceil^{+}$	1
7(d)	$K_{\text {stab }}=\frac{\left[\mathrm{Fe}(\mathrm{ed})_{2} \mathrm{Cl}_{2}^{3-}\right]}{\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}^{+}\right][\mathrm{ed}]^{2}}$	1
	$\mathrm{mol}^{-2} \mathrm{dm}^{6}$	1
7(e)(i)	 cis cis trans	3

Question	Answer	Marks
$7(e)($ ii $)$	any cis isomer and the trans isomer identified	
$7(e)$ (iii)	both correct cis isomers identified	$\mathbf{1}$
$7(e)($ iv $)$	trans isomer identified	$\mathbf{1}$

